Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Bioeng Biotechnol ; 12: 1356551, 2024.
Article in English | MEDLINE | ID: mdl-38638323

ABSTRACT

The Lipomyces clade contains oleaginous yeast species with advantageous metabolic features for biochemical and biofuel production. Limited knowledge about the metabolic networks of the species and limited tools for genetic engineering have led to a relatively small amount of research on the microbes. Here, a genome-scale metabolic model (GSM) of Lipomyces starkeyi NRRL Y-11557 was built using orthologous protein mappings to model yeast species. Phenotypic growth assays were used to validate the GSM (66% accuracy) and indicated that NRRL Y-11557 utilized diverse carbohydrates but had more limited catabolism of organic acids. The final GSM contained 2,193 reactions, 1,909 metabolites, and 996 genes and was thus named iLst996. The model contained 96 of the annotated carbohydrate-active enzymes. iLst996 predicted a flux distribution in line with oleaginous yeast measurements and was utilized to predict theoretical lipid yields. Twenty-five other yeasts in the Lipomyces clade were then genome sequenced and annotated. Sixteen of the Lipomyces species had orthologs for more than 97% of the iLst996 genes, demonstrating the usefulness of iLst996 as a broad GSM for Lipomyces metabolism. Pathways that diverged from iLst996 mainly revolved around alternate carbon metabolism, with ortholog groups excluding NRRL Y-11557 annotated to be involved in transport, glycerolipid, and starch metabolism, among others. Overall, this study provides a useful modeling tool and data for analyzing and understanding Lipomyces species metabolism and will assist further engineering efforts in Lipomyces.

2.
PLoS Negl Trop Dis ; 17(4): e0011192, 2023 04.
Article in English | MEDLINE | ID: mdl-37053286

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV; Flaviridae: Flavivirus) causes Japanese encephalitis (JE), which is the most important arboviral disease in Asia and the western Pacific. Among the five JEV genotypes (GI-V), GI has dominated traditional epidemic regions in the past 20 years. We investigated the transmission dynamics of JEV GI through genetic analyses. METHODS: We generated 18 JEV GI near full length sequences by using multiple sequencing approaches from mosquitoes collected in natural settings or from viral isolates obtained through cell culture. We performed phylogenetic and molecular clock analyses to reconstruct the evolutionary history by integrating our data with 113 publicly available JEV GI sequences. RESULTS: We identified two subtypes of JEV GI (GIa and GIb), with a rate of 5.94 × 10-4 substitutions per site per year (s/s/y). At present, GIa still circulates within a limited region, exhibited no significant growth, the newest strain was discovered in China (Yunnan) in 2017, whereas most JEV strains circulating belong to the GIb clade. During the past 30 years, two large GIb clades have triggered epidemics in eastern Asia: one epidemic occurred in 1992 [95% highest posterior density (HPD) = 1989-1995] and the causative strain circulates mainly in southern China (Yunnan, Shanghai, Guangdong, and Taiwan) (Clade 1); the other epidemic occurred in 1997 (95% HPD = 1994-1999) and the causative strain has increased in circulation in northern and southern China during the past 5 years (Clade 2). An emerging variant of Clade 2 contains two new amino acid markers (NS2a-151V, NS4b-20K) that emerged around 2005; this variant has demonstrated exponential growth in northern China. CONCLUSION: JEV GI stain circulating in Asia have shifted during the past 30 years, spatiotemporal differences were observed among JEV GI subclade. GIa is still circulating within a limited range, exhibite no significant growth. Two large GIb clades have triggered epidemics in eastern Asia, all JEV sequences identified in northern China during the past 5 years were of the new emerging variant of G1b-clade 2.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Phylogeny , China/epidemiology , Asia/epidemiology , Genotype
3.
Genome Res ; 32(10): 1952-1964, 2022 10.
Article in English | MEDLINE | ID: mdl-36109148

ABSTRACT

We assembled the 9.8-Gbp genome of western redcedar (WRC; Thuja plicata), an ecologically and economically important conifer species of the Cupressaceae. The genome assembly, derived from a uniquely inbred tree produced through five generations of self-fertilization (selfing), was determined to be 86% complete by BUSCO analysis, one of the most complete genome assemblies for a conifer. Population genomic analysis revealed WRC to be one of the most genetically depauperate wild plant species, with an effective population size of approximately 300 and no significant genetic differentiation across its geographic range. Nucleotide diversity, π, is low for a continuous tree species, with many loci showing zero diversity, and the ratio of π at zero- to fourfold degenerate sites is relatively high (approximately 0.33), suggestive of weak purifying selection. Using an array of genetic lines derived from up to five generations of selfing, we explored the relationship between genetic diversity and mating system. Although overall heterozygosity was found to decline faster than expected during selfing, heterozygosity persisted at many loci, and nearly 100 loci were found to deviate from expectations of genetic drift, suggestive of associative overdominance. Nonreference alleles at such loci often harbor deleterious mutations and are rare in natural populations, implying that balanced polymorphisms are maintained by linkage to dominant beneficial alleles. This may account for how WRC remains responsive to natural and artificial selection, despite low genetic diversity.


Subject(s)
Tracheophyta , Tracheophyta/genetics , Self-Fertilization/genetics , Alleles , Heterozygote , Polymorphism, Genetic , Genetic Variation , Selection, Genetic
4.
Plant J ; 112(2): 352-368, 2022 10.
Article in English | MEDLINE | ID: mdl-35986497

ABSTRACT

Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G1 phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G0 phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%). The likelihood of a gene being marked by H3K4me3 correlated with it being transcribed at some point during the life cycle but not necessarily by continuous active transcription, as exemplified by early zygotic genes, which may remain transcriptionally dormant for thousands of generations between sexual cycles. The exceptions to this rule were around 120 loci, some of which encode non-poly-adenylated transcripts, such as small nuclear RNAs and replication-dependent histones that had H3K4me3 peaks only when they were being transcribed. Mono-methylated H3K4 was the default state for the vast majority of histones that were bound outside of transcription start sites and terminator regions of genes. A small fraction of the genome that was depleted of any H3 lysine 4 methylation was enriched for DNA cytosine methylation and the genes within these DNA methylation islands were poorly expressed. Besides marking protein coding genes, H3K4me3 ChIP-seq data served also as a annotation tool for validation of hundreds of long non-coding RNA genes.


Subject(s)
Chlamydomonas , RNA, Long Noncoding , Histones/genetics , Histones/metabolism , Lysine/metabolism , Chlamydomonas/genetics , Chlamydomonas/metabolism , RNA, Long Noncoding/metabolism , DNA Methylation/genetics , Chromatin/genetics , Cytosine
5.
New Phytol ; 233(3): 1317-1330, 2022 02.
Article in English | MEDLINE | ID: mdl-34797921

ABSTRACT

Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.


Subject(s)
Lichens , Xylariales , Endophytes , Fungi , Lichens/microbiology , Multigene Family , Symbiosis/genetics
6.
Mol Plant Microbe Interact ; 34(10): 1128-1142, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34260261

ABSTRACT

The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to Serendipita spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, Serendipita bescii, and a related strain, S. vermifera, isolated from Australian orchids. Serendipita colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to Serendipita spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Basidiomycota , Mycorrhizae , Panicum , Australia , Basidiomycota/genetics , Fungi , Mycorrhizae/genetics , Panicum/genetics , Plant Roots/genetics , Symbiosis , Transcriptome/genetics
7.
Cell Surf ; 7: 100050, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33778219

ABSTRACT

Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.

8.
Microb Biotechnol ; 14(6): 2525-2537, 2021 11.
Article in English | MEDLINE | ID: mdl-33666344

ABSTRACT

Next to d-glucose, the pentoses l-arabinose and d-xylose are the main monosaccharide components of plant cell wall polysaccharides and are therefore of major importance in biotechnological applications that use plant biomass as a substrate. Pentose catabolism is one of the best-studied pathways of primary metabolism of Aspergillus niger, and an initial outline of this pathway with individual enzymes covering each step of the pathway has been previously established. However, although growth on l-arabinose and/or d-xylose of most pentose catabolic pathway (PCP) single deletion mutants of A. niger has been shown to be negatively affected, it was not abolished, suggesting the involvement of additional enzymes. Detailed analysis of the single deletion mutants of the known A. niger PCP genes led to the identification of additional genes involved in the pathway. These results reveal a high level of complexity and redundancy in this pathway, emphasizing the need for a comprehensive understanding of metabolic pathways before entering metabolic engineering of such pathways for the generation of more efficient fungal cell factories.


Subject(s)
Arabinose , Pentoses , Aspergillus niger/genetics , Metabolic Networks and Pathways/genetics , Xylose
9.
PLoS Negl Trop Dis ; 14(8): e0008574, 2020 08.
Article in English | MEDLINE | ID: mdl-32853274

ABSTRACT

BACKGROUND: Shifts have occurred in the epidemiological characteristics of Japanese encephalitis (JE), extending from the molecular level to the population level. The aim of this study was to investigate the seroprevalence of JE neutralizing antibodies in healthy populations from different age groups in Zhejiang Province, and to conduct mosquito monitoring to evaluate the infection rate of Japanese encephalitis virus (JEV) among vectors, as well as the molecular characteristics of the E gene of isolated JEV strains. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1190 sera samples were screened by a microseroneutralization test, including 429 infants (28d-11m) and 761 participants (2y-82y). For those under 1 year old, the geometric mean titers (GMTs) of the JE neutralizing antibody was 9.49 at birth and significantly declined as the age of month increased (r = -0.225, P<0.001). For those above 1-year old, seropositive proportions were higher in subjects aged 1-3 years old as well as ≥25 years old (65%-75%), and relatively lower in subjects aged between 4-25 years old (22%-55%). Four or more years after the 2nd dose of JEV-L (first dose administered at 8 months and the second at 2 years of age), the seropositive proportion decreased to 32.5%, and GMTs decreased to 8.08. A total of 87,201 mosquitoes were collected from livestock sheds in 6 surveillance sites during 2015-2018, from which 139 E gene sequences were successfully amplified. The annual infection rate according to bias-corrected maximum likelihood estimation of JEV in Culex tritaeniorhynchus was 1.56, 2.36, 5.65 and 1.77 per 1000, respectively. JEV strains isolated during 2015-2018 all belonged to Genotype I. The E gene of amplified 139 samples differed from the JEV-L vaccine strain at fourteen amino acid residues, including the eight key residues related to virulence and virus attenuation. No divergence was observed at the sites related to antigenicity. CONCLUSIONS/SIGNIFICANCE: Zhejiang Province was at a high risk of JE exposure due to relatively lower neutralizing antibody levels among the younger-aged population and higher infection rates of JEV in mosquitoes. Continuous, timely and full coverage of JE vaccination are essential, as well as the separation of human living areas and livestock shed areas. In addition, annual mosquito surveillance and periodic antibody level monitoring are important for providing evidence for improvement in JE vaccines and immunization schedules.


Subject(s)
Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/virology , Molecular Epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing , Child , Child, Preschool , China/epidemiology , Cross-Sectional Studies , Culex/virology , Culicidae/virology , Encephalitis Virus, Japanese/classification , Encephalitis Virus, Japanese/immunology , Encephalitis Virus, Japanese/isolation & purification , Genes, Viral/genetics , Humans , Infant , Infant, Newborn , Middle Aged , Mosquito Vectors/virology , Seroepidemiologic Studies , Young Adult
10.
Front Neurol ; 11: 360, 2020.
Article in English | MEDLINE | ID: mdl-32528396

ABSTRACT

In July-December 2018, an outbreak of polio-like acute flaccid myelitis (AFM) occurred in Zhejiang province, China. Enterovirus (EV)-D68 infection has been reported to be associated with AFM. This study aimed to investigate the clinical presentation, laboratory findings, and outcomes of AFM patients. We investigated the clinical and virologic information regarding the AFM patients, and real-time PCR, sequencing, and phylogenetic analysis were used to investigate the cause of AFM. Eighteen cases met the definition of AFM, with a median age of 4.05 years (range, 0.9-9 years), and nine (50%) were EV-D68 positive. Symptoms included acute flaccid limb weakness and cranial nerve dysfunction. On magnetic resonance imaging, 11 (61.1%) patients had spinal gray matter abnormalities. Electromyography results of 16 out of 17 patients (94.1%) were abnormal. Cerebrospinal fluid (CSF) pleocytosis was common (94.4%), while CSF protein concentration was normal in all patients. There was little improvement after early aggressive therapy. Phylogenetic analysis revealed that EV-D68 subclade B3 was the predominant lineage circulating in Zhejiang province in 2018.

11.
Emerg Infect Dis ; 25(8): 1589-1591, 2019 08.
Article in English | MEDLINE | ID: mdl-31310205

ABSTRACT

We report a disease outbreak caused by chikungunya virus in Zhejiang Province, China, in August 2017. Phylogenic analysis indicated that this virus belonged to the Indian Ocean clade of the East/Central/South African genotype and was imported by a traveler returning from Bangladesh.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Chikungunya virus , Disease Outbreaks , Bangladesh , Chikungunya Fever/history , Chikungunya virus/classification , Chikungunya virus/genetics , China/epidemiology , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/virology , Genome, Viral , History, 21st Century , Humans , Phylogeny , Travel-Related Illness
12.
Proc Natl Acad Sci U S A ; 116(15): 7409-7418, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30902897

ABSTRACT

The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.


Subject(s)
Agaricales , Databases, Nucleic Acid , Fruiting Bodies, Fungal , Fungal Proteins , Genes, Fungal , Transcriptome/physiology , Agaricales/genetics , Agaricales/growth & development , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/growth & development , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/physiology
13.
Int J Infect Dis ; 79: 58-64, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30423458

ABSTRACT

BACKGROUND: Recently, both sporadic and outbreak aseptic meningitis caused by enteroviruses have been reported in Zhejiang Province based on a surveillance system. METHODS: This study analysed the epidemiologic features, phylogenetic characteristics and prevalence of enterovirus neutralizing antibodies (nAbs) from 2014 to 2017 in Zhejiang Province. RESULTS: A total of 584 samples were collected. Males accounted for 66.07% while females accounted for 33.93%. The median age was 6 years (range: 1-15 years). Cases peaked in May and August (81.17%) and 162 cases (28.93%) occurred in June. We detected 15 serotypes, some of which (E6, E9, E18 and E30) were the dominant serotypes prevalent in different years and geographical regions. Phylogenetic results revealed that all of the isolates from this study belonged to the human enterovirus B family. A total of 329 subjects sampled from a healthy population were tested for nAbs against B5, E6 and E30 in Rui'an county in 2015. The seropositive rate of E30 in each age group was significantly higher than that of the other serotypes. CONCLUSION: Enterovirus-associated encephalitis pathogens circulating in Zhejiang caused sporadic aseptic meningitis in children. The level of nAbs against human enterovirus reflects the history of previous infections in different age groups. Therefore, additional surveillance sites and more precise seroprevalence studies based on these populations are required to gain better insight into the epidemiology of enterovirus-associated encephalitis in Zhejiang Province.


Subject(s)
Disease Outbreaks , Encephalitis, Viral/epidemiology , Enterovirus Infections/epidemiology , Enterovirus/isolation & purification , Adolescent , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Child , Child, Preschool , China/epidemiology , Enterovirus/genetics , Female , Humans , Infant , Male , Molecular Epidemiology , Phylogeny
14.
Elife ; 72018 10 16.
Article in English | MEDLINE | ID: mdl-30325307

ABSTRACT

The columbine genus Aquilegia is a classic example of an adaptive radiation, involving a wide variety of pollinators and habitats. Here we present the genome assembly of A. coerulea 'Goldsmith', complemented by high-coverage sequencing data from 10 wild species covering the world-wide distribution. Our analyses reveal extensive allele sharing among species and demonstrate that introgression and selection played a role in the Aquilegia radiation. We also present the remarkable discovery that the evolutionary history of an entire chromosome differs from that of the rest of the genome - a phenomenon that we do not fully understand, but which highlights the need to consider chromosomes in an evolutionary context.


Subject(s)
Adaptation, Biological , Aquilegia/genetics , Chromosomes, Plant , Evolution, Molecular , Genome, Plant , Gene Flow , Plant Dispersal , Selection, Genetic , Sequence Analysis, DNA
15.
Article in English | MEDLINE | ID: mdl-30023351

ABSTRACT

Dengue, a mosquito-borne disease caused by the dengue virus (DV), has been recognized as a global public health threat. In 2017, an unexpected dengue outbreak occurred in Zhejiang, China. To clarify and characterize the causative agent of this outbreak, data on dengue fever cases were collected from the China Information System for Disease Control and Prevention in Zhejiang province for subsequent epidemiological analysis. A total of 1,229 cases were reported, including 1,149 indigenous and 80 imported cases. Most indigenous cases (1,128 cases) were in Hangzhou. The epidemic peak occurred in late August and early September, and the incidence rate of elderly people (4.34 per 100,000) was relatively high. Imported cases were reported all year round, and most were from South-East Asia and Western Pacific regions. Young people and men accounted for a large fraction of the cases. Acute phase serums of patients were collected for virus isolation. And 35 isolates (including 25 DV-2, 8 DV-1, 1 DV-3, and 1 DV-4) were obtained after inoculation and culture in mosquito C6/36 cells. The E genes of the 35 new DV isolates and the complete genome of a DV-2 isolate (Zhejiang/HZ33/2017), and the E gene of a DV-2 isolate from Ae. albopictus (Zhejiang/Aedes-1/2017) were determined. Phylogenetic analyses were performed using the neighbor-joining method with the Tajima-Nei model. Phylogenetically, DVs of all four serotypes with multiple genotypes (mainly including 21 Cosmopolitan genotype DV-2, 4 Asian I genotype DV-2, 6 genotype I DV-1, and 2 genotype V DV-1) were present in the indigenous and imported cases in Zhejiang during the same period. Most of the isolates probably originated from South-East Asia and Western Pacific countries. The imported cases, high density of mosquito vector, and missed diagnosis might contribute to the 2017 outbreak in Zhejiang.


Subject(s)
Dengue Virus/classification , Dengue Virus/isolation & purification , Dengue/epidemiology , Dengue/virology , Disease Outbreaks , Genotype , Age Factors , Animals , China/epidemiology , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/virology , Dengue Virus/genetics , Humans , Incidence , Molecular Epidemiology , Phylogeny , Seasons , Sequence Analysis, DNA , Serogroup
16.
Mol Genet Genomics ; 293(6): 1437-1452, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30022352

ABSTRACT

Dioecy has evolved numerous times in plants, but heteromorphic sex chromosomes are apparently rare. Sex determination has been studied in multiple Salix and Populus (Salicaceae) species, and P. trichocarpa has an XY sex determination system on chromosome 19, while S. suchowensis and S. viminalis have a ZW system on chromosome 15. Here we use whole genome sequencing coupled with quantitative trait locus mapping and a genome-wide association study to characterize the genomic composition of the non-recombining portion of the sex determination region. We demonstrate that Salix purpurea also has a ZW system on chromosome 15. The sex determination region has reduced recombination, high structural polymorphism, an abundance of transposable elements, and contains genes that are involved in sex expression in other plants. We also show that chromosome 19 contains sex-associated markers in this S. purpurea assembly, along with other autosomes. This raises the intriguing possibility of a translocation of the sex determination region within the Salicaceae lineage, suggesting a common evolutionary origin of the Populus and Salix sex determination loci.


Subject(s)
Chromosomes, Plant , Salix/genetics , Sex Chromosomes/genetics , Sex Determination Processes/genetics , Chromosome Mapping , Evolution, Molecular , Genetic Markers , Genome, Plant , Genome-Wide Association Study , Salicaceae/genetics
17.
J Med Virol ; 90(11): 1681-1686, 2018 11.
Article in English | MEDLINE | ID: mdl-29979812

ABSTRACT

Zika virus (ZIKV), dengue virus (DENV), chikungunya virus (CHIKV) and yellow fever virus (YFV) share the same mosquito vectors and have similar clinical manifestations early stage of infection. Therefore, simultaneously differentiating these viruses from each other is necessary. We developed a multiplex real-time reverse-transcriptase polymerase chain reaction (RT-PCR) assay for the differentiation of these four viruses in a single tube. The linear range was established by regression analysis, and the R2 value for each virus was ≥0.98, and the 95% lower limit of detection for each virus was as follows (copies/reaction): ZIKV-Asian, 9; ZIKV-Africa, 15; CHIKV, 11; DENV-1, 19; DENV-2, 13; DENV-3, 24; DENV-4, 36; and YFV, 17. Meanwhile, our multiplex real-time RT-PCR has a good consistency with the commercial singleplex assay. In summary, the developed assay can be effectively used for the diagnosis of ZIKV, DENV, CHIKV, and YFV infections.


Subject(s)
Chikungunya Fever/diagnosis , Dengue/diagnosis , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Yellow Fever/diagnosis , Zika Virus Infection/diagnosis , Africa , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Dengue/virology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Humans , Molecular Diagnostic Techniques/methods , Time Factors , Yellow Fever/virology , Yellow fever virus/genetics , Yellow fever virus/isolation & purification , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/virology
18.
J Microbiol Biotechnol ; 27(12): 2221-2227, 2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29156511

ABSTRACT

Echovirus serotype 30 (ECHO30) has been responsible for several recent worldwide outbreaks of viral meningitis. In Zhejiang Province, China, ECHO30 has been one of the main causes of viral meningitis for years. This study, using phylogenetic analysis of the VP1 gene, was performed to investigate the general molecular epidemiology and genetic patterns of ECHO30 circulating in Zhejiang Province between the years 2002 and 2015. The nucleotide sequences of ECHO30 VP1 showed that they were 64.8% identical with the prototype strain, Bastianni, while the amino acids were 84.9% identical. Phylogenetic analyses showed that ECHO30 in the Zhejiang area has diverged into two genotypes. Genotype I consists of strains isolated since 2002, whereas genotype II includes strains that were mainly isolated during the 2002 to 2004 outbreak. ECHO30 has been endemically circulating in both humans and the environment for a long period of time. Additionally, we evaluated the significance of recombination presented during the years 2005 to 2007 to demonstrate that recombination plays an important role in the prevalence of ECHO30 in the Zhejiang area.


Subject(s)
Disease Outbreaks , Enterovirus B, Human/genetics , Enterovirus Infections/epidemiology , Base Sequence , Capsid Proteins/genetics , China/epidemiology , Enterovirus B, Human/classification , Enterovirus B, Human/isolation & purification , Enterovirus Infections/virology , Genotype , Humans , Phylogeny , Prevalence , RNA, Viral/genetics , Recombination, Genetic , Sequence Analysis, DNA
19.
Proc Natl Acad Sci U S A ; 114(31): E6361-E6370, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716924

ABSTRACT

Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.


Subject(s)
Cytoskeleton/genetics , Evolution, Molecular , Genome, Plant/genetics , Porphyra/cytology , Porphyra/genetics , Actins/genetics , Calcium Signaling/genetics , Cell Cycle/genetics , Cell Wall/genetics , Cell Wall/metabolism , Chromatin/genetics , Kinesins/genetics , Phylogeny
20.
Pathog Glob Health ; 110(6): 233-237, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27646838

ABSTRACT

Echovirus 30 (E30) is a major pathogen associated with aseptic meningitis. In the summer of 2014, a family clustering aseptic meningitis outbreak occurred in urban-rural fringe of Ningbo city in Zhejiang Province in China. To identify the etiologic agent, specimens were tested by cell culture and reverse transcriptase-polymerase chain reaction. Pathogenic examination confirmed that the outbreak is caused by E30. The first case is a 6-year-old child, who studied in kindergarten in local, suffered from headache and fever. Same symptoms appeared in his parents, aunts, and other six relatives continuously. Meanwhile, vomiting occurred in majority of the patients and diarrhea in parts of them. White blood cells in cerebrospinal fluid (CSF) exceeded normal range in all patients. Protein levels in CSF were above normal range in half of the patients. Glucose levels in CSF were within normal range in all patients. We isolated six strains E30 in the stool specimens of patients, and carried out sequencing analysis to VP1 region. Sequencing results showed that 100% sequence identity was seen in both nucleotide and amino acid levels. Phylogenetic analysis discovered that isolate in this study was grouped into sublineage D2 together with sequences isolated from other areas of China in the 2000s and 2010s. Our study is the first family clustering outbreak of aseptic meningitis caused by E30 in Zhejiang Province in China. It is essential to establish an enterovirus molecular surveillance system in China to prevent mass outbreaks in Zhejiang.


Subject(s)
Echovirus Infections/diagnosis , Enterovirus B, Human/genetics , Meningitis, Aseptic/diagnosis , Adolescent , Adult , Child , China/epidemiology , Cluster Analysis , Disease Outbreaks , Echovirus Infections/epidemiology , Echovirus Infections/transmission , Echovirus Infections/virology , Enterovirus B, Human/classification , Enterovirus B, Human/isolation & purification , Family Health , Feces/virology , Female , Humans , Male , Meningitis, Aseptic/epidemiology , Meningitis, Aseptic/virology , Phylogeny , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...